自然数是一切等价有限集合共同特征的标记。整数包括自然数,所以自然数一定是整数,且一定是非负整数。以下是小编整理的自然数的相关内容,希望对您有所参考和帮助。
自然数是指用以计量事物的件数或表示事物次序的数。即用数码0,1,2,3,4……所表示的数。自然数由0开始,一个接一个,组成一个无穷的集体。自然数有有序性,无限性。分为偶数和奇数,合数和质数等。
自然数理论的发展自然数是人们认识的所有数中最基本的一类,为了使数的系统有严密的逻辑基础,19世纪的数学家建立了自然数的两种等价的理论:自然数的序数理论和基数理论,使自然数的概念、运算和有关性质得到严格的论述。
(序数理论是意大利数学家G.皮亚诺提出来的。他总结了自然数的性质,用公理法给出自然数的如下定义)
自然数集N是指满足以下条件的集合:
①N中有一个元素,记作1。
②N中每一个元素都能在 N 中找到一个元素作为它的后继者。
③1是0的后继者。
④0不是任何元素的后继者。
⑤不同元素有不同的后继者。
⑥(归纳公理)N的任一子集M,如果1∈M,并且只要x在M中就能推出x的后继者也在M中,那么M=N。